ABSTRACT. For a Banach space X and an increasing subadditive continuous function φ on $[0, \infty)$ with $\varphi(0) = 0$, let us denote by $L^\varphi(I, X)$, the space of all X-valued φ-integrable functions $f : I \to X$ on a certain positive complete σ-finite measure space (I, \sum, μ) with $\int_I \varphi \|f(t)\| \, d\mu(t) < \infty$ and $l^\varphi(X) = \left\{ (x_k) : \sum_{k=1}^\infty \varphi \|x_k\| < \infty, \ x_k \in X \right\}$.

The aim of this paper is to prove that for a closed separable subspace G of X, $L^\varphi(I, G)$ is simultaneously proximinal in $L^\varphi(I, X)$ if and only if G is simultaneously proximinal in X. Other result on simultaneous approximation of $l^\varphi(G)$ in $l^\varphi(X)$ is presented.

1. INTRODUCTION

A function $\varphi : [0, \infty) \to [0, \infty)$ is called a modulus function if it satisfies the following conditions:

(1) φ is continuous and increasing function.
(2) $\varphi(x) = 0$ if and only if $x = 0$.
(3) $\varphi(x + y) \leq \varphi(x) + \varphi(y)$.

The functions $\varphi(x) = x^p$, $0 < p < 1$, and $\varphi(x) = \ln(1 + x)$ are modulus functions. In fact if φ is a modulus function, then $\psi(x) = \varphi(x)/(1 + \varphi(x))$ is a modulus function. Further the composition of two modulus function is a modulus function.

For a modulus function φ and a Banach space X, let us denote by $L^\varphi(I, X)$, the space of all X-valued φ-integrable functions $f : I \to X$ on a certain positive complete σ-finite measure space (I, \sum, μ) with $\int_I \varphi \|f(t)\| \, d\mu(t) < \infty$ and

$$l^\varphi(X) = \left\{ (x_k) : \sum_{k=1}^\infty \varphi \|x_k\| < \infty, \ x_k \in X \right\}.$$

For $a = (a_k) \in l^\varphi(X)$ and $f \in L^\varphi(I, X)$ set

$$\|a\|_\varphi = \sum_{k=1}^\infty \varphi \|a_k\| \quad \text{and} \quad \|f\|_\varphi = \int_I \varphi \|f(t)\| \, d\mu(t).$$

If $X = C$, the set of complex numbers, the spaces $l^\varphi(X)$ and $L^\varphi(I, X)$ is simply denoted by l^φ and $L^\varphi(I)$ respectively. It is known, [4], that $l^\varphi \subseteq l^1$, $L^\varphi(I) \supseteq L^1(I)$.
and \((l^p(X), \|\cdot\|_p)\) and \((L^p(I, X), \|\cdot\|_p)\) are complete metric linear spaces. For more on \(l^p\) and \(L^p(I)\) we refer to the reader to [3] and [5].

Note that the Banach space \(X\) is a metric space with the metric \(d(x, y) = \varphi \|x - y\|\).

Definition 1.1. Let \(\varphi\) be a modulus function and \(G\) be a closed subspace of a Banach space \(X\). We say that

(a) \(G\) is simultaneously proximinal in \(X\) if for each \(m\)-tuple of elements \((x_1, x_2, \ldots, x_m) \in X^m\) there exists \(g \in G\) such that:

\[
\sum_{i=1}^{m} \varphi \|x_i - g\| = \text{dist}_\varphi(x_1, x_2, \ldots, x_m, G) = \inf_{h \in G} \sum_{i=1}^{m} \varphi \|x_i - h\|.
\]

In other words for every \(h \in G\)

\[
\|\sum_{i=1}^{m} \varphi (x_i - g)\| \leq \|\sum_{i=1}^{m} \varphi (x_i - h)\|.
\]

(b) \(L^p(I, G)\) is simultaneously proximinal in \(L^p(I, X)\) if for each \(m\)-tuple of elements \(f_1, f_2, \ldots, f_m \in (L^p(I, X))^m\) there exists \(g \in L^p(I, G)\) such that

\[
\sum_{i=1}^{m} \|f_i - g\| = \text{dist}_\varphi(f_1, f_2, \ldots, f_m, L^p(I, G)) = \inf_{h \in L^p(I, G)} \sum_{i=1}^{m} \|f_i - h\|.
\]

The problem of best simultaneous approximation has been studied by many authors e.g., [2], [9], [14] and [15]. Most of these works have dealt with the characterization of best simultaneous approximation in spaces of continuous functions with values in a Banach space \(X\). Some existence and uniqueness results were obtained. Results on best simultaneous approximation in general Banach spaces may be found in [11] and [13].

Related results on \(L^p(I, X), 1 \leq p < \infty\), are given in [14]. In [14], it is shown that if \(G\) is a reflexive subspace of a Banach space \(X\), then \(L^p(I, G)\) is simultaneously proximinal in \(L^p(I, X)\). If \(p = 1\), Abu Sarhan and Khalil [1], proved that if \(G\) is a reflexive subspace of the Banach space \(X\) or \(G\) is a 1-summand subspace of \(X\), then \(L^1(I, G)\) is simultaneously proximinal in \(L^1(I, X)\).

The aim of this paper is to prove that for a closed separable subspace \(G\) of \(X\), \(L^1(I, G)\) is simultaneously proximinal in \(L^1(I, X)\) if and only if \(G\) is simultaneously proximinal in \(X\). Some results are inspired by the results in [14]. Other result on simultaneous approximation of \(l^p(G)\) in \(l^p(X)\) is presented.

Throughout this paper, \((I, \sum, \mu, \cdot\cdot\cdot)\) is a \(\sigma\)-finite measure space, \(X\) is a Banach space, \(G\) is a closed subspace of \(X\) and the norm of \(v \in X\) is denoted by \(\|v\|\).

2. Distance Formulae

Progress in the discussion of simultaneous proximality when \(X\) does not possess pleasant properties is greatly facilitated by the fact that the distance from an \(m\)-tuple of elements \(f_1, f_2, \ldots, f_m \in L^p(I, X)\) to a subspace \(L^p(I, G)\) is computed by the following theorem:
Theorem 2.1. Let \(\varphi \) be a modulus function and \(f_1, f_2, ..., f_m \in L^\varphi (I, X) \). Then

\[
\text{dist}_\varphi (f_1, f_2, ..., f_m, L^\varphi (I, G)) = \int_I \text{dist}_\varphi (f_1(s), f_2(s), ..., f_m(s), G) \, d\mu(s).
\]

Proof. Let \(f_1, f_2, ..., f_m \in L^\varphi (I, X) \). Then for each \(i = 1, 2, ..., m \), \(f_i \) is the limit almost everywhere of a sequence of simple functions \(\{f_{i,n}\} \) in \(L^\varphi (I, X) \). Since the distance function \(\text{dist}_\varphi (x, G) \) is continuous in \(x \in X \), \(\lim_{n \to \infty} \varphi (\|f_{i,n}(s) - f_i(s)\|) = 0 \), \(i = 1, 2, ..., m \), implies that

\[
\lim_{n \to \infty} \left| \text{dist}_\varphi (f_{1,n}(s), ..., f_{m,n}(s), G) - \text{dist}_\varphi (f_1(s), ..., f_m(s), G) \right| = 0.
\]

Furthermore for each \(n \), the function: \(s \mapsto \text{dist}_\varphi (f_{1,n}(s), f_{2,n}(s), ..., f_{m,n}(s), G) \) is a simple function and so we may assume that \(\text{dist}_\varphi (f_1(s), f_2(s), ..., f_m(s), G) \) is measurable. Now for any \(g \in L^\varphi (\mu, G) \)

\[
\int_I \text{dist}_\varphi (f_1(s), f_2(s), ..., f_m(s), G) \, d\mu(s) \leq \int_I \sum_{i=1}^m \varphi (\|f_i(s) - g(s)\|) \, d\mu(s)
\]

\[
= \sum_{i=1}^m \int_I \varphi (\|f_i(s) - g(s)\|) \, d\mu(s).
\]

Therefore

\[
(1) \quad \int_I \text{dist}_\varphi (f_1(s), f_2(s), ..., f_m(s), G) \, d\mu(s) \leq \text{dist}_\varphi (f_1, f_2, ..., f_m, L^\varphi (I, G)).
\]

For the reverse inequality fix \(\epsilon > 0 \). Since simple functions are dense in \(L^\varphi (I, X) \), there exist simple functions, \(f_j \) in \(L^\varphi (I, X) \) such that \(\|f_j - f_j'\|_\varphi < \frac{\epsilon}{mn} \), \(j = 1, 2, ..., m \). Assume that \(f_j(t) = \sum_{i=1}^n \chi_{A_i}(t)y^{j}_i \), \(j = 1, 2, ..., m \), where \(\chi_{A_i} \) are the characteristic functions of the measurable sets \(A_i \) in \(I \) and \(y^{j}_i \in X \). We can assume that \(\sum_{i=1}^n \chi_{A_i} = 1 \) and \(\mu(A_i) > 0 \).

Given \(\epsilon > 0 \) for each \(i = 1, 2, ..., n \), select \(g_i \in G \) such that:

\[
\sum_{j=1}^m \varphi \|y^{j}_i - g_i\| < \text{dist}_\varphi (y^{1}_i, y^{2}_i, ..., y^{m}_i, G) + \frac{\epsilon}{n\mu(A_i)}.
\]
Let \(g(t) = \sum_{i=1}^{n} \chi_{A_i}(t)g_i \). Clearly \(g \in L^\varphi(I,G) \) and
\[
dist_{\varphi} \left(f_1, \ldots, f_m, L^\varphi(I,G) \right) \leq \sum_{j=1}^{m} \left\| f_j - f'_j \right\|_{\varphi} \\
+ \dist_{\varphi} \left(f'_1, f'_2, \ldots, f'_m, L^\varphi(I,G) \right) \\
\leq \epsilon + \sum_{j=1}^{m} \left\| f'_j - g \right\|_{\varphi} \\
= \epsilon + \sum_{j=1}^{m} \int_{I} \varphi \left\| f'_j(s) - g(s) \right\| d\mu(s) \\
= \epsilon + \sum_{j=1}^{m} \sum_{i=1}^{n} \int_{A_i} \varphi \left\| f'_j(s) - g(s) \right\| d\mu(s) \\
= \epsilon + \sum_{j=1}^{m} \sum_{i=1}^{n} \left(\varphi \left\| y'_j - g_i \right\| \right) \mu(A_i) \\
= \epsilon + \sum_{i=1}^{n} \sum_{j=1}^{m} \left(\varphi \left\| y'_j - g_i \right\| \right) \mu(A_i) \\
\leq \epsilon + \sum_{i=1}^{n} \mu(A_i) \dist_{\varphi} \left(y^1_i, y^2_i, \ldots, y^m_i, G \right) + \frac{\epsilon}{n} \\
\leq 2\epsilon + \sum_{i=1}^{n} \int_{A_i} \dist_{\varphi} \left(y^1_i, y^2_i, \ldots, y^m_i, G \right) d\mu(s) \\
= 2\epsilon + \int_{I} \dist_{\varphi} \left(f'_1(s), f'_2(s), \ldots, f'_m(s), G \right) d\mu(s).
\]

Since
\[
dist_{\varphi} \left(f'_1(s), f'_2(s), \ldots, f'_m(s), G \right) \leq \dist_{\varphi} \left(f_1(s), f_2(s), \ldots, f_m(s), G \right) \\
+ \sum_{j=1}^{m} \varphi \left\| f'_j(s) - f(s) \right\|.
\]
then,
\[
\text{dist}_\varphi (f_1, f_2, ..., f_m, L^r(I, G)) \leq 2\epsilon + \sum_{j=1}^{m} \int_I \varphi \left\| f_j'(s) - f_j(s) \right\| d\mu(s) \\
+ \int_I \text{dist}_\varphi (f_1(s), f_2(s), ..., f_m(s), G) d\mu(s) \\
= 2\epsilon + \sum_{j=1}^{m} \left\| f_j - f_j' \right\|_\varphi \\
+ \int_I \text{dist}_\varphi (f_1(s), f_2(s), ..., f_m(s), G) d\mu(s) \\
\leq 3\epsilon + \int_I \text{dist}_\varphi (f_1(s), f_2(s), ..., f_m(s), G) d\mu(s),
\]
which (since \(\epsilon\) is arbitrary) implies that
\[
(2) \quad \text{dist}_\varphi (f_1, f_2, ..., f_m, L^r(I, G)) \leq \int_I \text{dist}_\varphi (f_1(s), f_2(s), ..., f_m(s), G) d\mu(s).
\]
Hence by 1 and 2 the proof is complete. \(\square\)

An application of Theorem 2.1 is

Corollary 2.2. An element \(g \in L^r(I, G)\) is a best simultaneous approximation of \(f_1, f_2, ..., f_m \in L^r(I, X)\) if and only if \(g(t)\) is a best simultaneous approximation of \(f_1(t), f_2(t), ..., f_m(t) \in X\) for almost all \(t \in I\).

3. Best Simultaneous Approximation in \(L^r(I, X)\)

The main result in this section is, for a modulus function \(\varphi\) and a closed separable subspace \(G\) of a Banach space \(X\), \(L^r(I, G)\) is simultaneously proximinal in \(L^r(I, X)\) if and only if \(G\) is simultaneously proximinal in \(X\). We begin with the following:

Theorem 3.1. If \(G\) is simultaneously proximinal in \(X\), then for every \(m\)-tuple of simple function \(f_1, f_2, ..., f_m \in L^r(I, X)\), \(P(f_1, f_2, ..., f_m, L^r(I, X))\) is not empty, where \(P(f_1, f_2, ..., f_m, L^r(I, X))\) is the set of all elements \(g \in L^r(I, G)\) such that \(g\) is a best simultaneous approximation of \(m\)-tuple of the elements \(f_1, f_2, ..., f_m\).

Proof. Let \(f_1, f_2, ..., f_m\) be an \(m\)-tuple of simple functions in \(L^r(I, X)\). With no loss of generality we can assume that \(f_j(t) = \sum_{i=1}^{n} \chi_{A_i}(t)y_{ij}\), where \(A_i\) are disjoint measurable sets such that \(\bigcup_{i=1}^{n} A_i = I\). Pick \(g_i \in G\) such that \(g_i\) is a best simultaneous approximation of
the m-tuple of elements \(y_i^1, y_i^2, \ldots, y_i^m \in X, i = 1, 2, \ldots, n \). Set \(g(t) = \sum_{i=1}^n \kappa A_i(t) g_i \). Then for any \(h \in L^\varphi(I, X) \) we have:

\[
\sum_{j=1}^m \| f_j - h \| \varphi = \sum_{j=1}^m \int_I \varphi \| f_j(s) - h(s) \| d\mu(s)
\]

\[
= \int_I \sum_{j=1}^m \varphi \| f_j(s) - h(s) \| d\mu(s)
\]

\[
= \sum_{i=1}^n \int_{A_i} \sum_{j=1}^m \varphi \| y_i^j - h_i \| d\mu(s)
\]

\[
\geq \sum_{i=1}^n \int_{A_i} \sum_{j=1}^m \varphi \| y_i^j - g_i \| d\mu(s)
\]

\[
= \int_I \sum_{j=1}^m \varphi \| f_j(s) - g(s) \| d\mu(s).
\]

Hence \(\sum_{j=1}^m \| f_j - g \| \varphi = \inf_{h \in L^\varphi(I, G)} \sum_{j=1}^m \| f_j - h \| \varphi \). □

Theorem 3.2. If \(\varphi \) is a modulus function, then \(G \) is simultaneously proximinal in \(X \) if \(L^\varphi(I, G) \) is simultaneously proximinal in \(L^\varphi(I, X) \).

Proof. Let \(x_1, x_2, \ldots, x_m \in X \). Set \(f_j = 1 \otimes x_j, j = 1, 2, \ldots, m \), where 1 is the constant function 1. Clearly for each \(j = 1, 2, \ldots, m \), \(f_j \in L^\varphi(I, X) \). By assumption there exists \(g \in L^\varphi(I, G) \) such that for any \(h \in L^\varphi(I, G) \)

\[
\sum_{j=1}^m \| f_j - g \| \varphi \leq \sum_{j=1}^m \| f_j - h \| \varphi.
\]

By Theorem 2.1

\[
\sum_{j=1}^m \varphi \| f_j(t) - g(t) \| \leq \sum_{j=1}^m \varphi \| f_j(t) - h(t) \|
\]

a.e. in \(I \). Or

\[
\sum_{j=1}^m \varphi \| x_j - g(t) \| \leq \sum_{j=1}^m \varphi \| x_j - h(t) \|.
\]

Let \(h \) run over all functions \(1 \otimes z \), for \(z \in G \), we get

\[
\sum_{j=1}^m \varphi \| x_j - g(t) \| \leq \sum_{j=1}^m \varphi \| x_j - z \|.
\]

□
Now we pose the following problem: If G is separable is it true that $L^*(I,G)$ is simultaneously proximinal in $L^*(I,X)$? to solve this problem we begin by the following:

Lemma 3.3. [Lemma 2.9 of [9]] Assume $\mu(I) < +\infty$. Suppose (M,d) is a metric space and A is a subset of I such that $\mu^*(A) = \mu(I)$, where μ^* denotes the outer measure associated to μ. If g is a mapping from I to M with separable range, then for any $\epsilon > 0$ there exists a countable partition $\{E_n\}$ of I in measurable sets and $A_n \subset A \cap E_n$ such that $\mu^*(A_n) = \mu(E_n)$ and $\text{diam}(g(A_n)) < \epsilon$ for all n.

Theorem 3.4. Let G be a closed separable subspace of X. Let us suppose that G is simultaneously proximinal in X and $f_1, f_2, ..., f_m : I \to X$ be measurable functions. Then there is a measurable function $g : I \to X$ such that $g(t)$ is a best simultaneous approximation of $(f_1(t), f_2(t), ..., f_m(t))$ in G for almost all t.

Proof. Let $f_1, f_2, ..., f_m : I \to X$ be measurable functions. So we may assume that $f_1(I), f_2(I), ..., f_m(I)$ are separable sets in X. Using the fact that μ is σ-finite we can find countable partitions $\{I_{1n}\}_{n=1}^\infty, \{I_{2n}\}_{n=1}^\infty, ..., \{I_{mn}\}_{n=1}^\infty$ of I in measurable sets such that $\text{diam}_\sigma(f_i(I_{in})) < \frac{1}{2}$ and $\mu(I_{in}) < \infty$, $i = 1, 2, ..., m$, for all n, where

$$\text{diam}_\sigma A = \sup \{ \varphi \|x - y\| : x, y \in A \}.$$

Consider the partition $\{I_{n_1,n_2,...,n_m}\}_{n_i=1}^\infty$, where $I_{n_1,n_2,...,n_m} = \bigcap_{i=1}^m I_{in}$, for $1 \leq n_i < \infty$. Then $\text{diam}_\sigma(f_i(I_{n_1,n_2,...,n_m})) < \frac{1}{2}$, $i = 1, 2, ..., m$. For simplicity we write $\{I_{n_1,n_2,...,n_m}\}_{n_i=1}^\infty$ as $\{I_n\}_{n=1}^\infty$. For each $t \in I$, let $g_0(t)$ be a best simultaneous approximation of $(f_1(t), f_2(t), ..., f_m(t))$ in G. Define g_0 from I into G such that $g_0(t)$ is a best simultaneous approximation of $(f_1(t), f_2(t), ..., f_m(t))$. Applying Lemma 3.3 to the mapping g_0 in each I_n taking $\epsilon = \frac{1}{2}$ and $I = A = A_n$. We get a countable partition in each I_n and therefore a countable partition in the whole of I. Thus we get a countable partition $\{E_n\}_{n=1}^\infty$ of I in measurable sets and a sequence of subsets $\{A_n\}_{n=1}^\infty$ of I such that

$$A_n \subseteq E_n, \mu^*(A_n) = \mu(E_n) < +\infty,$$

$$\text{diam}_\sigma(g_0(A_n)) < \frac{1}{2}, \text{diam}_\sigma(f_i(E_n)) < \frac{1}{2}, i = 1, 2, ..., m.$$

Let us apply again the same argument in each E_n with $\epsilon = \frac{1}{2^2}$, $I = E_n$ and $A = A_n$. For each n we get a countable partition $\{E_{nk} : 1 \leq k < \infty\}$ of E_n in measurable sets and a sequence $\{A_{nk} : 1 \leq k < \infty\}$ of subsets of I such that

$$A_{nk} \subseteq E_{nk} \cap A_n, \mu^*(A_{nk}) = \mu(E_{nk}),$$

$$\text{diam}_\sigma(g_0(A_{nk})) < \frac{1}{2^2} \text{ and } \text{diam}_\sigma(f_i(E_{nk})) < \frac{1}{2^2}, i = 1, 2, ..., m,$$

for all n and k. Let us proceed by induction. Now for each natural number k, let Δ_k be the set of k-tuples of natural numbers and let $\Delta = \bigcup_{k=1}^\infty \Delta_k$. On this Δ consider the partial order defined by $(m_1, m_2, ..., m_i) \leq (n_1, n_2, ..., n_j)$ if and only if $i \leq j$ and $m_k = n_k$.
for \(k = 1, 2, \ldots, i \). Then by induction for each natural number \(k \), we can take a partition \(\{E_\alpha : \alpha \in \Delta_k\} \) of subsets of \(I \) and a collection \(\{A_\alpha\}_{\alpha \in \Delta_k} \) such that:

1. \(A_\alpha \subseteq E_\alpha \) and \(\mu^*(A_\alpha) = \mu(E_\alpha) \) for each \(\alpha \).
2. \(A_\alpha \subseteq A_\beta \) and \(E_\alpha \subseteq E_\beta \) if \(\beta \leq \alpha \).
3. \(\text{diam}_\varphi(f_i(E_\alpha)) < \frac{1}{2^n} \) for \(i = 1, 2, \ldots, m \) and \(\text{diam}_\varphi(g_0(A_\alpha)) < \frac{1}{2^n} \) if \(\alpha \in \Delta_k \).

We may assume that \(A_\alpha \neq \emptyset \) for all \(\alpha \) (forget the \(\alpha \)'s for which \(A_\alpha = \emptyset \)). For each \(\alpha \in \Delta \) take \(t_\alpha \in A_\alpha \) and define \(g_k \) from \(I \) into \(G \) by \(g_k(.) = \sum_{\alpha \in \Delta_k} \varphi_{E_\alpha}(.)g_0(t_\alpha) \). Then for each \(t \in I \) and \(n \leq k \) we have:

\[
\varphi\|g_n(t) - g_k(t)\| = \varphi \left\| \sum_{\alpha \in \Delta_n} \varphi_{E_\alpha}(t)g_0(t_\alpha) - \sum_{\beta \in \Delta_k} \varphi_{E_\beta}(t)g_0(t_\beta) \right\|.
\]

But since \(n \leq k \) by 1 and 2 we have:

\[
\varphi\|g_n(t) - g_k(t)\| \leq \varphi \left\| \sum_{\beta \in \Delta_k} \varphi_{E_\beta}(t)\left(g_0(t_\alpha) - g_0(t_\beta) \right) \right\|
\leq \sum_{\beta \in \Delta_k} \phi \|g_0(t_\alpha) - g_0(t_\beta)\| \mu(E_\beta)
\leq \frac{1}{2^n}.
\]

Therefore \((g_k(t)) \) is a Cauchy sequence in \(X \) for every \(t \in I \). Consequently \((g_k(t)) \) is a convergent sequence for every \(t \in I \). Let \(g : I \to G \) be the point wise limit of \((g_k) \). Since \(g_k \) is measurable for each \(k \), \(g \) is measurable. Let \(t \in I \) and let \(n \) be a natural number. Suppose \(t \in E_\alpha \). We have:

\[
\sum_{i=1}^{m} \varphi\|f_i(t) - g_n(t)\| = \sum_{i=1}^{m} \varphi\|f_i(t) - g_0(t_\alpha)\|
\leq \sum_{i=1}^{m} \varphi\|f_i(t) - f_i(t_\alpha)\| + \varphi\|f_i(t_\alpha) - g_0(t_\alpha)\|
\leq \sum_{i=1}^{m} \frac{1}{2^n} + \varphi\|f_i(t_\alpha) - g_0(t_\alpha)\|
\leq \frac{m}{2^n} + \text{dist}_\varphi((f_1(t_\alpha), f_2(t_\alpha), \ldots, f_m(t_\alpha)), G)
\leq \frac{m}{2^n} + \sum_{i=1}^{m} \varphi\|f_i(t) - f_i(t_\alpha)\|
+ \text{dist}_\varphi((f_1(t), f_2(t), \ldots, f_m(t)), G)
\leq \frac{m}{2^n-1} + \text{dist}_\varphi((f_1(t), f_2(t), \ldots, f_m(t)), G).
\]
Letting $n \to \infty$ we get:

$$\sum_{i=1}^{m} \varphi \| f_i(t) - g(t) \| = \lim_{n \to \infty} \sum_{i=1}^{m} \varphi \| f_i(t) - g_n(t) \|$$

$$= \text{dist}_{\varphi}(\{f_1(t), f_2(t), \ldots, f_m(t)\}, G).$$

and so $g(t)$ is a best simultaneous approximation of $f_1(t), f_2(t), \ldots, f_m(t)$ in G. □

Theorem 3.5. Let φ be a modulus function and G be a closed separable subspace of X. Then $L^\varphi(I, G)$ is simultaneously proximinal in $L^\varphi(I, X)$ if and only if G is simultaneously proximinal in X.

Proof. Necessity is in Theorem 3.2 Let us show sufficiency. Suppose that G is simultaneously proximinal in X, and let f_1, f_2, \ldots, f_m be functions in $L^\varphi(I, X)$. Theorem 3.4 guarantees that there exists a measurable function g defined on I with values in X such that $g(t)$ is a best simultaneous approximation of $f_1(t), f_2(t), \ldots, f_m(t)$ in G for almost all t. It follows from Corollary 2.2 that g is a best simultaneous approximation of f_1, f_2, \ldots, f_m in $L^\varphi(I, G)$ □

Theorem 3.6. Let φ be a modulus function. Then if $g \in L^\varphi(I, G)$ is a best simultaneous approximation from $L^\varphi(I, G)$ of an m-tuple of elements $f_1, f_2, \ldots, f_m \in L^\varphi(I, X)$ then for every measurable subset A of I and every $h \in L^\varphi(I, G)$,

$$\int_A \varphi (\| f_{j_0}(s) - g(s) \|) \, d\mu(s) \leq \int_A \varphi (\| f_{j_0}(s) - h(s) \|) \, d\mu(s),$$

for some $j_0 \in \{1, 2, \ldots, m\}$.

Proof. If $\mu(A) = 0$ then there is nothing to prove. Suppose that for some A satisfying $\mu(A) > 0$ and for some $h_0 \in L^\varphi(I, G)$, the inequality does not hold for $J = 1, 2, \ldots, m$. Now, define $g_0 \in L^\varphi(I, G)$ by

$$g_0(s) := \begin{cases} g(s) & \text{if } s \in I - A \\ h_0(s) & \text{if } s \in A \end{cases}$$
Then we have for $j = 1, 2, \ldots, m$

\[
\int_I \varphi (\|f_j(s) - g_0(s)\|) \, d\mu = \int_A \varphi (\|f_j(s) - h_0(s)\|) \, d\mu(s)
+ \int_{I-A} \varphi (\|f_j(s) - g(s)\|) \, d\mu(s)
< \int_A \varphi (\|f_j(s) - g(s)\|) \, d\mu(s)
+ \int_{I-A} \varphi (\|f_j(s) - g(s)\|) \, d\mu(s)
= \int_I \varphi (\|f_j(s) - g(s)\|) \, d\mu(s).
\]

This implies that

\[
\sum_{j=1}^m \|f_j - g_0\|_\varphi < \sum_{j=1}^m \|f_j - g\|_\varphi
\]

which contradict the fact that g is a best simultaneous approximation from $L^\varphi(I, G)$ of the m-tuple of elements f_1, f_2, \ldots, f_m. □

As a corollary we get:

Corollary 3.7. If g is a best simultaneous approximation from $L^\varphi(I, G)$ of an m-tuple of elements $f_1, f_2, \ldots, f_m \in L^\varphi(I, X)$ then, for every measurable subset A if I,

\[
\int_A \varphi (\|g(s)\|) \, d\mu(s) \leq 2 \max_{1 \leq j \leq m} \left(\int_A \varphi (\|f_j(s)\|) \, d\mu(s) \right).
\]

Proof. Since, for $j = 1, 2, \ldots, m$

\[
\int_A \varphi (\|g(s)\|) \, d\mu(s) \leq \int_A \varphi (\|f_j(s) - g(s)\|) \, d\mu(s) + \int_A \varphi (\|f_j(s)\|) \, d\mu(s),
\]

we obtain, by using Theorem 3.6 with $h = 0$, that for $j_0 \in \{1, 2, \ldots, m\}$

\[
\int_A \varphi (\|g(s)\|) \, d\mu(s) \leq 2 \int_A \varphi (\|f_{j_0}(s)\|) \, d\mu(s)
\leq 2 \max_{1 \leq j \leq m} \left(\int_A \varphi (\|f_j(s)\|) \, d\mu(s) \right),
\]

which completes the proof. □
We end this paper with the following result on best simultaneous approximation of $l^\varphi(X)$ in $l^\varphi(G)$.

Theorem 3.8. Let φ be a modulus function. Then $l^\varphi(G)$ is simultaneously proximinal in $l^\varphi(X)$ if G is simultaneously proximinal in X.

Proof. Let $f_1, f_2, \ldots, f_m \in l^\varphi(X)$. Since G is simultaneously proximinal in X, for each n, there exists $g(n) \in G$ such that for every $y \in G$

$$\sum_{j=1}^{m} \varphi \| f_j(n) - g(n) \| \leq \sum_{j=1}^{m} \varphi \| f_j(n) - y \| .$$

Since $y = 0 \in G$, we get

$$\sum_{j=1}^{m} \varphi \| f_j(n) - g(n) \| \leq \sum_{j=1}^{m} \varphi \| f_j(n) \| .$$

But φ is increasing and subadditive so

$$m \varphi \| g(n) \| = \sum_{j=1}^{m} \varphi \| g(n) - f_j(n) + f_j(n) \|
\leq \sum_{j=1}^{m} \varphi \| g(n) - f_j(n) \| + \varphi \| f_j(n) \| \leq 2 \sum_{j=1}^{m} \varphi \| f_j(n) \| .$$

Consequently $g = (g(n)) \in l^\varphi(G)$. We claim that g is a best simultaneous approximation for $f_1, f_2, \ldots, f_m \in l^\varphi(X)$ in $l^\varphi(G)$. To see that let $h \in l^\varphi(G)$. Then

$$\sum_{j=1}^{m} \| f_j - h \|_\varphi = \sum_{j=1}^{m} \sum_{n=1}^{\infty} \varphi \| f_j(n) - h(n) \|
= \sum_{n=1}^{\infty} \sum_{j=1}^{m} \varphi \| f_j(n) - h(n) \|
\geq \sum_{n=1}^{\infty} \sum_{j=1}^{m} \varphi \| f_j(n) - g(n) \|
= \sum_{j=1}^{m} \sum_{n=1}^{\infty} \varphi \| f_j(n) - g(n) \|
= \sum_{j=1}^{m} \| f_j - g \|_\varphi .$$

References

Department of Mathematics, Yarmouk University, Irbid Jordan

E-mail address: sharifa@yu.edu.jo